top of page
Accepted Papers
Scroll left to right on mobile to see full table.
Poster #s 1-24 are in Session I.
Poster #s 25-48 are in Session II.
Poster Number | Title | Comma separated list of author names | Author Affiliations |
---|---|---|---|
1 | CAMP: Combinatorial Engineering of Proteins | Manvitha Ponnapati, Brian Lynch, Sapna Sinha, Joseph Jacobson | MIT, Independent |
2 | An Intrinsic Framework for Riemannian Diffusion Models | Hyunwoo Park, Sungwoo Park | Carnegie Mellon University, LG AI Research |
3 | RNA-FRAMEFLOW: Flow Matching for de novo 3D RNA Backbone Design | Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian R. Jamasb, Charles C. Harris, Simon V. Mathis, Kieran Didi, Bryan Hooi, Pietro Liò | Yale University, University of Cambridge, University of Missouri, Prescient Design (Genentech), National University of Singapore |
4 | PharmacoForge: Generating Pharmacophores with Diffusion Models | Emma L. Flynn, Riya Shah, Rishal Aggarwal, Ian Dunn, David Ryan Koes | University of Pittsburgh |
5 | Known Unknowns: Out-of-Distribution Property Prediction in Molecules and Materials | Nofit Segal, Aviv Netanyahu, Kevin Greenman, Rafael Gomez-Bombarelli, Pulkit Agrawal | MIT, Catholic Institute of Technology |
6 | LOL-EVE: Predicting Promoter Variant Effects from Evolutionary Sequences | Courtney A. Shearer, Felix Teufel, Rose Orenbuch, Daniel Ritter, Aviv Spinner, Erik Xie, Jonathan Frazer, Mafalda Dias, Pascal Notin, Debora S. Marks | Harvard Medical School, Novo Nordisk A/S, University of Copenhagen, Cornell University, MIT, Centre for Genomic Regulation Universitat Pompeu Fabra, University of Oxford, Broad Institute |
7 | REACTION-CONDITIONED DE NOVO ENZYME DESIGN WITH ALPHAENZYME | Chenqing Hua | McGill University, Mila-Quebec AI Institute |
8 | Bio2Token: All-atom tokenization of any biomolecular structure with Mamba | Andrew Li-Yang Liu, Axel Elaldi, Nathan Russell, Olivia Viessmann | Flagship Pioneering |
9 | VaxSeer: Selecting influenza vaccine strains through evolutionary and antigenicity models | Wenxian Shi, Jeremy Wohlwend, Menghua Wu, Regina Barzilay | MIT |
10 | FINE-TUNING DISCRETE DIFFUSION MODELS VIA REWARD OPTIMIZATION WITH APPLICATIONS TO DNA AND PROTEIN DESIGN | Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal, Tommi Jaakkola, Sergey Levine, Hanchen Wang, Aviv Regev | MIT, Genentech, Harvard University, Genentech, UC Berkeley, Stanford University |
11 | De Novo Generation of Heavy Metal-Binding Peptides with Classifier-Guided Diffusion Sampling | Yinuo Zhang, Pranam Chatterjee | Duke University |
12 | Retraining ProteinMPNN with Family-Specific Proteins for Enhanced Thermostability and Enzymatic Activity of Lysozyme at Elevated Temperatures | Yehlin Cho, Lirong Zhou, Banghao Wu, Hannes Stärk, Bingxin Zhou, Jason Yim, Jin Huang, Daniella Pretorius, Liang Hong, Sergey Ovchinnikov | MIT, Shanghai Jiao Tong University, Imperial College London |
13 | PREDICTING PERTURBATION TARGETS WITH CAUSAL DIFFERENTIAL NETWORKS | Menghua Wu, Umesh Padia, Sean H Murphy, Regina Barzilay, Tommi Jaakkola | MIT |
14 | ProtDiff: Function-Conditioned Masked Diffusion Models for Robust Directed Protein Generation | Vishrut Thoutam, Yair Schiff, Sergey Ovchinnikov, Pranam Chatterjee | High Technology High School, Cornell University, MIT, Duke University |
15 | MeMDLM: De Novo Membrane Protein Design with Masked Discrete Diffusion Protein Language Models | Shrey Goel, Vishrut Thoutam, Edgar Mariano Marroquin, Aaron Gokaslan, Arash Firouzbakht, Sophia Vincoff, Volodymyr Kuleshov, Huong T. Kratochvil, Pranam Chatterjee | Duke University, Cornell University, University of North Carolina |
16 | moPPIt: De Novo Generation of Motif-Specific Binders with Protein Language Models | Tong Chen, Yinuo Zhang, Pranam Chatterjee | Duke University |
17 | Functionally Shrinking Proteins with Guided Diffusion Models | Zhangzhi Peng, Chentong Wang, Alex Tong, Pranam Chatterjee | Duke University, Westlake University, Mila-Quebec AI Institute |
18 | Quantum Positional Encodings for Graph Neural Networks | Slimane Thabet, Mehdi Djellabi, Igor O. Sokolov, Sachin Kasture, Louis-Paul Henry, Loïc Henriet | Pasqal |
19 | Quantum-Enhanced Neural Exchange-Correlation Functionals | Igor O. Sokolov, Gert-Jan Both, Art D. Bochevarov, Pavel A. Dub, Daniel S. Levine, Christopher T. Brown, Shaheen Acheche, Panagiotis Kl. Barkoutsos, Vincent E. Elfving | PASQAL, Schrödinger |
20 | CLIPZyme: Reaction-Conditioned Virtual Screening of Enzymes | Peter G. Mikhael, Itamar Chinn, Regina Barzilay | MIT |
21 | DPAC: Prediction and Design of Protein-DNA Interactions via Sequence-Based Contrastive Learning | Tianlai Chen, Pranay Vure, Rishab Pulugurta, Pranam Chatterjee | Duke University |
22 | Efficient Generation of Molecular Clusters with
Dual-Scale Equivariant Flow Matching | Akshay Subramanian, Shuhui Qu, Cheol Woo Park, Sulin Liu, Janghwan Lee, Rafael Gomez-Bombarelli | MIT, Samsung Display America Lab |
23 | ProtSCAPE: Mapping the landscape of protein conformations
in molecular dynamics | Siddharth Viswanath, Dhananjay Bhaskar, David R. Johnson, João Felipe Rocha, Egbert Castro, Jackson D. Grady, Alex T. Grigas, Michael A. Perlmutter, Corey S. O'Hern, Smita Krishnaswamy | Yale University, Boise State University |
24 | JAMUN: Transferable Molecular Conformational Ensemble Generation with Walk-Jump Sampling | Ameya Daigavane, Bodhi P. Vani, Joseph Kleinhenz, Joshua Rackers, Saeed Saremi | Prescient Design (Genentech) |
25 | Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation | Soojung Yang, Juno Nam, Johannes C. B. Dietschreit, Rafael Gomez-Bombarelli | MIT, University of Vienna |
26 | FLOW MATCHING FOR ACCELERATED SIMULATION OF ATOMIC TRANSPORT IN MATERIALS | Juno Nam, Sulin Liu, Gavin Winter, KyuJung Jun, Soojung Yang, Rafael Gomez-Bombarelli | MIT |
27 | MDmis: A biophysical machine learning approach for missense variants in disordered protein regions | Aziz Zafar, Chao Hou, Yufeng Shen | Columbia University |
28 | Enhancing Molecular Design through Graph-based Topological Reinforcement Learning | Xiangyu Zhang | Johns Hopkins University |
29 | Semiparametric conformal prediction for molecular property prediction | Ji Won Park, Kyunghyun Cho | Prescient Design (Genentech), NYU |
30 | Molphenix: A Multimodal Foundation Model for PhenoMolecular Retrieval | Philip Fradkin, Puria Azadi Moghadam, Karush Suri, Frederik Wenkel, Maciej Sypetkowski, Dominique Beaini | Valence Labs, University of Toronto, University of British Columbia, Université de Montréal, Mila-Quebec AI Institute |
31 | Enhancing ultra-large library virtual screening with SPRINT | Andrew T. McNutt, Abhinav K. Adduri, Caleb N. Ellington, Monica T. Dayao, Eric P. Xing, Hosein Mohimani, David R. Koes | University of Pittsburgh, Carnegie Mellon University, Mohamed bin Zayed University of Artificial Intelligence, Petuum Inc. |
32 | SHAPBALS: Improving Molecular Mapping and Interpretability of Machine Learning for Property Prediction | Christopher Kottke, Michael-Rock Goldsmith, Maximilian Ebert | Congruence Therapeutics |
33 | ImmunoStruct: Integration of protein structure, sequence, and biochemical properties for immunogenicity prediction and interpretation | Kevin B. Givechian, Joao Felipe Rocha, Edward Yang, Chen Liu, Rex Ying, Akiko Iwasaki, Smita Krishnaswamy | Yale University, Howard Hughes Medical Institute - Chevy Chase |
34 | Exploring Pre-training Objectives for Foundation Models for Mass Spectrometry Data | Ling Min Serena Khoo, Regina Barzilay | MIT |
35 | Generative artificial intelligence for navigating synthesizable chemical space | Wenhao Gao, Shitong Luo, Connor W. Coley | MIT |
36 | FusOn-pLM: A Fusion Oncoprotein-Specific Language Model via Focused Probabilistic Masking | Sophia Vincoff, Shrey Goel, Kseniia Kholina, Rishab Pulugurta, Pranay Vure, Pranam Chatterjee | Duke University |
37 | ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design | Keir Adams, Kento Abeywardane, Jenna Fromer, Connor Coley | MIT |
38 | Navigating Chemical Space with Latent Flows | Guanghao Wei, Yining Huang, Chenru Duan, Yue Song, Yuanqi Du | Cornell University, Harvard University, MIT, Caltech |
39 | Scaffold Hopping with Generative Reinforcement Learning | Luke Rossen, Finton Sirockin, Nadine Schneider, Francesca Grisoni | Eindhoven University of Technology, Novartis BioMedical Research |
40 | Organic Solubility Prediction at the Limit of Aleatoric Uncertainty | Lucas Attia, Jackson Burns, Patrick S. Doyle, William H. Green | MIT |
41 | PropEn: Optimizing Proteins with Implicit Guidance | Nataša Tagasovska, Vladimir Gligorijević, Kyunghyun Cho, Andreas Loukas | Genentech|Roche, NYU |
42 | Benchmarking Deep Learning Models for Protein-Ligand Interactions Beyond Public Datasets | Hao Yu, Dave Barkan, Jian Fang, Lingling Shen, Peter Kutchukian | Novartis Institutes for BioMedical Research |
43 | Ab initio Reconstruction of Protein Structures Inside Cells | Rishwanth Raghu, Axel Levy, Ryan Feathers, Ellen D. Zhong | Princeton University, Stanford University |
44 | Structural Elucidation with Forward Mass Spectrometry Neural Networks | Runzhong Wang, Mrunali Manjrekar, Joules Provenzano, Samuel Goldman, Connor W. Coley | MIT |
45 | Phospho-Tune: Enhanced Structural Modeling of Phosphorylated Protein Interactions | Ernest Glukhov, Veranika Averkava, Sergei Kotelnikov, Sofya A. Gaydukova, Darya Stepanenko, Thu Nguyen, Julie C. Mitchell, Carlos Simmerling, Sandor Vajda, Andrew Emili, Dzmitry Padhorny, Dima Kozakov | Stony Brook University, Boston University, Oak Ridge National Laboratory, OHSU Knight Cancer Institute |
46 | COMPOSING UNBALANCED FLOWS FOR FLEXIBLE DOCKING AND RELAXATION | Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Andreas Krause | MIT, ETH |
47 | Manufacturing-Aware Generative Model Architectures Enable Biological Sequence Design and Synthesis at Petascale | Eli N. Weinstein, Mattia G. Gollub, Andrei Slabodkin, Cameron L. Gardner, Kerry Dobbs, Xiao-Bing Cui, Alan N. Amin, George M. Church, Elizabeth B. Wood | Columbia University, Jura Bio, NYU, Harvard University, Jura Bio |
48 | PiFold+: Inverse Folding of Protein Binders with Additional Target Side Chain Context | Venkata Srikar Kavirayuni, Ryan Brand, Amir Shanehsazzadeh | Absci Corporation |
bottom of page