top of page

Accepted Papers

Scroll left to right on mobile to see full table.

Poster #s 1-24 are in Session I.
Poster #s 25-48 are in Session II.

Poster Number
Title
Comma separated list of author names
Author Affiliations
1
CAMP: Combinatorial Engineering of Proteins
Manvitha Ponnapati, Brian Lynch, Sapna Sinha, Joseph Jacobson
MIT, Independent
2
An Intrinsic Framework for Riemannian Diffusion Models
Hyunwoo Park, Sungwoo Park
Carnegie Mellon University, LG AI Research
3
RNA-FRAMEFLOW: Flow Matching for de novo 3D RNA Backbone Design
Rishabh Anand, Chaitanya K. Joshi, Alex Morehead, Arian R. Jamasb, Charles C. Harris, Simon V. Mathis, Kieran Didi, Bryan Hooi, Pietro Liò
Yale University, University of Cambridge, University of Missouri, Prescient Design (Genentech), National University of Singapore
4
PharmacoForge: Generating Pharmacophores with Diffusion Models
Emma L. Flynn, Riya Shah, Rishal Aggarwal, Ian Dunn, David Ryan Koes
University of Pittsburgh
5
Known Unknowns: Out-of-Distribution Property Prediction in Molecules and Materials
Nofit Segal, Aviv Netanyahu, Kevin Greenman, Rafael Gomez-Bombarelli, Pulkit Agrawal
MIT, Catholic Institute of Technology
6
LOL-EVE: Predicting Promoter Variant Effects from Evolutionary Sequences
Courtney A. Shearer, Felix Teufel, Rose Orenbuch, Daniel Ritter, Aviv Spinner, Erik Xie, Jonathan Frazer, Mafalda Dias, Pascal Notin, Debora S. Marks
Harvard Medical School, Novo Nordisk A/S, University of Copenhagen, Cornell University, MIT, Centre for Genomic Regulation Universitat Pompeu Fabra, University of Oxford, Broad Institute
7
REACTION-CONDITIONED DE NOVO ENZYME DESIGN WITH ALPHAENZYME
Chenqing Hua
McGill University, Mila-Quebec AI Institute
8
Bio2Token: All-atom tokenization of any biomolecular structure with Mamba
Andrew Li-Yang Liu, Axel Elaldi, Nathan Russell, Olivia Viessmann
Flagship Pioneering
9
VaxSeer: Selecting influenza vaccine strains through evolutionary and antigenicity models
Wenxian Shi, Jeremy Wohlwend, Menghua Wu, Regina Barzilay
MIT
10
FINE-TUNING DISCRETE DIFFUSION MODELS VIA REWARD OPTIMIZATION WITH APPLICATIONS TO DNA AND PROTEIN DESIGN
Chenyu Wang, Masatoshi Uehara, Yichun He, Amy Wang, Tommaso Biancalani, Avantika Lal, Tommi Jaakkola, Sergey Levine, Hanchen Wang, Aviv Regev
MIT, Genentech, Harvard University, Genentech, UC Berkeley, Stanford University
11
De Novo Generation of Heavy Metal-Binding Peptides with Classifier-Guided Diffusion Sampling
Yinuo Zhang, Pranam Chatterjee
Duke University
12
Retraining ProteinMPNN with Family-Specific Proteins for Enhanced Thermostability and Enzymatic Activity of Lysozyme at Elevated Temperatures
Yehlin Cho, Lirong Zhou, Banghao Wu, Hannes Stärk, Bingxin Zhou, Jason Yim, Jin Huang, Daniella Pretorius, Liang Hong, Sergey Ovchinnikov
MIT, Shanghai Jiao Tong University, Imperial College London
13
PREDICTING PERTURBATION TARGETS WITH CAUSAL DIFFERENTIAL NETWORKS
Menghua Wu, Umesh Padia, Sean H Murphy, Regina Barzilay, Tommi Jaakkola
MIT
14
ProtDiff: Function-Conditioned Masked Diffusion Models for Robust Directed Protein Generation
Vishrut Thoutam, Yair Schiff, Sergey Ovchinnikov, Pranam Chatterjee
High Technology High School, Cornell University, MIT, Duke University
15
MeMDLM: De Novo Membrane Protein Design with Masked Discrete Diffusion Protein Language Models
Shrey Goel, Vishrut Thoutam, Edgar Mariano Marroquin, Aaron Gokaslan, Arash Firouzbakht, Sophia Vincoff, Volodymyr Kuleshov, Huong T. Kratochvil, Pranam Chatterjee
Duke University, Cornell University, University of North Carolina
16
moPPIt: De Novo Generation of Motif-Specific Binders with Protein Language Models
Tong Chen, Yinuo Zhang, Pranam Chatterjee
Duke University
17
Functionally Shrinking Proteins with Guided Diffusion Models
Zhangzhi Peng, Chentong Wang, Alex Tong, Pranam Chatterjee
Duke University, Westlake University, Mila-Quebec AI Institute
18
Quantum Positional Encodings for Graph Neural Networks
Slimane Thabet, Mehdi Djellabi, Igor O. Sokolov, Sachin Kasture, Louis-Paul Henry, Loïc Henriet
Pasqal
19
Quantum-Enhanced Neural Exchange-Correlation Functionals
Igor O. Sokolov, Gert-Jan Both, Art D. Bochevarov, Pavel A. Dub, Daniel S. Levine, Christopher T. Brown, Shaheen Acheche, Panagiotis Kl. Barkoutsos, Vincent E. Elfving
PASQAL, Schrödinger
20
CLIPZyme: Reaction-Conditioned Virtual Screening of Enzymes
Peter G. Mikhael, Itamar Chinn, Regina Barzilay
MIT
21
DPAC: Prediction and Design of Protein-DNA Interactions via Sequence-Based Contrastive Learning
Tianlai Chen, Pranay Vure, Rishab Pulugurta, Pranam Chatterjee
Duke University
22
Efficient Generation of Molecular Clusters with Dual-Scale Equivariant Flow Matching
Akshay Subramanian, Shuhui Qu, Cheol Woo Park, Sulin Liu, Janghwan Lee, Rafael Gomez-Bombarelli
MIT, Samsung Display America Lab
23
ProtSCAPE: Mapping the landscape of protein conformations in molecular dynamics
Siddharth Viswanath, Dhananjay Bhaskar, David R. Johnson, João Felipe Rocha, Egbert Castro, Jackson D. Grady, Alex T. Grigas, Michael A. Perlmutter, Corey S. O'Hern, Smita Krishnaswamy
Yale University, Boise State University
24
JAMUN: Transferable Molecular Conformational Ensemble Generation with Walk-Jump Sampling
Ameya Daigavane, Bodhi P. Vani, Joseph Kleinhenz, Joshua Rackers, Saeed Saremi
Prescient Design (Genentech)
25
Learning Collective Variables with Synthetic Data Augmentation through Physics-Inspired Geodesic Interpolation
Soojung Yang, Juno Nam, Johannes C. B. Dietschreit, Rafael Gomez-Bombarelli
MIT, University of Vienna
26
FLOW MATCHING FOR ACCELERATED SIMULATION OF ATOMIC TRANSPORT IN MATERIALS
Juno Nam, Sulin Liu, Gavin Winter, KyuJung Jun, Soojung Yang, Rafael Gomez-Bombarelli
MIT
27
MDmis: A biophysical machine learning approach for missense variants in disordered protein regions
Aziz Zafar, Chao Hou, Yufeng Shen
Columbia University
28
Enhancing Molecular Design through Graph-based Topological Reinforcement Learning
Xiangyu Zhang
Johns Hopkins University
29
Semiparametric conformal prediction for molecular property prediction
Ji Won Park, Kyunghyun Cho
Prescient Design (Genentech), NYU
30
Molphenix: A Multimodal Foundation Model for PhenoMolecular Retrieval
Philip Fradkin, Puria Azadi Moghadam, Karush Suri, Frederik Wenkel, Maciej Sypetkowski, Dominique Beaini
Valence Labs, University of Toronto, University of British Columbia, Université de Montréal, Mila-Quebec AI Institute
31
Enhancing ultra-large library virtual screening with SPRINT
Andrew T. McNutt, Abhinav K. Adduri, Caleb N. Ellington, Monica T. Dayao, Eric P. Xing, Hosein Mohimani, David R. Koes
University of Pittsburgh, Carnegie Mellon University, Mohamed bin Zayed University of Artificial Intelligence, Petuum Inc.
32
SHAPBALS: Improving Molecular Mapping and Interpretability of Machine Learning for Property Prediction
Christopher Kottke, Michael-Rock Goldsmith, Maximilian Ebert
Congruence Therapeutics
33
ImmunoStruct: Integration of protein structure, sequence, and biochemical properties for immunogenicity prediction and interpretation
Kevin B. Givechian, Joao Felipe Rocha, Edward Yang, Chen Liu, Rex Ying, Akiko Iwasaki, Smita Krishnaswamy
Yale University, Howard Hughes Medical Institute - Chevy Chase
34
Exploring Pre-training Objectives for Foundation Models for Mass Spectrometry Data
Ling Min Serena Khoo, Regina Barzilay
MIT
35
Generative artificial intelligence for navigating synthesizable chemical space
Wenhao Gao, Shitong Luo, Connor W. Coley
MIT
36
FusOn-pLM: A Fusion Oncoprotein-Specific Language Model via Focused Probabilistic Masking
Sophia Vincoff, Shrey Goel, Kseniia Kholina, Rishab Pulugurta, Pranay Vure, Pranam Chatterjee
Duke University
37
ShEPhERD: Diffusing shape, electrostatics, and pharmacophores for bioisosteric drug design
Keir Adams, Kento Abeywardane, Jenna Fromer, Connor Coley
MIT
38
Navigating Chemical Space with Latent Flows
Guanghao Wei, Yining Huang, Chenru Duan, Yue Song, Yuanqi Du
Cornell University, Harvard University, MIT, Caltech
39
Scaffold Hopping with Generative Reinforcement Learning
Luke Rossen, Finton Sirockin, Nadine Schneider, Francesca Grisoni
Eindhoven University of Technology, Novartis BioMedical Research
40
Organic Solubility Prediction at the Limit of Aleatoric Uncertainty
Lucas Attia, Jackson Burns, Patrick S. Doyle, William H. Green
MIT
41
PropEn: Optimizing Proteins with Implicit Guidance
Nataša Tagasovska, Vladimir Gligorijević, Kyunghyun Cho, Andreas Loukas
Genentech|Roche, NYU
42
Benchmarking Deep Learning Models for Protein-Ligand Interactions Beyond Public Datasets
Hao Yu, Dave Barkan, Jian Fang, Lingling Shen, Peter Kutchukian
Novartis Institutes for BioMedical Research
43
Ab initio Reconstruction of Protein Structures Inside Cells
Rishwanth Raghu, Axel Levy, Ryan Feathers, Ellen D. Zhong
Princeton University, Stanford University
44
Structural Elucidation with Forward Mass Spectrometry Neural Networks
Runzhong Wang, Mrunali Manjrekar, Joules Provenzano, Samuel Goldman, Connor W. Coley
MIT
45
Phospho-Tune: Enhanced Structural Modeling of Phosphorylated Protein Interactions
Ernest Glukhov, Veranika Averkava, Sergei Kotelnikov, Sofya A. Gaydukova, Darya Stepanenko, Thu Nguyen, Julie C. Mitchell, Carlos Simmerling, Sandor Vajda, Andrew Emili, Dzmitry Padhorny, Dima Kozakov
Stony Brook University, Boston University, Oak Ridge National Laboratory, OHSU Knight Cancer Institute
46
COMPOSING UNBALANCED FLOWS FOR FLEXIBLE DOCKING AND RELAXATION
Gabriele Corso, Vignesh Ram Somnath, Noah Getz, Regina Barzilay, Tommi Jaakkola, Andreas Krause
MIT, ETH
47
Manufacturing-Aware Generative Model Architectures Enable Biological Sequence Design and Synthesis at Petascale
Eli N. Weinstein, Mattia G. Gollub, Andrei Slabodkin, Cameron L. Gardner, Kerry Dobbs, Xiao-Bing Cui, Alan N. Amin, George M. Church, Elizabeth B. Wood
Columbia University, Jura Bio, NYU, Harvard University, Jura Bio
48
PiFold+: Inverse Folding of Protein Binders with Additional Target Side Chain Context
Venkata Srikar Kavirayuni, Ryan Brand, Amir Shanehsazzadeh
Absci Corporation

Tuesday, November 5, 2024

MITJameelClinic_Illustration_2_RGB1.png
MITJameelClinic_Illustration_2_RGB4.png
MITJameelClinic_Illustration_2_RGB3.png
MITJameelClinic_Illustration_2_RGB2_edit

5th Molecular Machine Learning Conference

bottom of page